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Tobacco use is a global problem with serious health consequences.  Though some treatment options exist, there remains a 
great need for new effective pharmacotherapies to aid smokers in maintaining long-term abstinence.  In the present article, 
we first discuss the neural mechanisms underlying nicotine reward, and then review various mechanism-based pharmaco-
logical agents for the treatment of nicotine dependence.  An oversimplified hypothesis of addiction to tobacco is that nico-
tine is the major addictive component of tobacco.  Nicotine binds to α4β2 and α7 nicotinic acetylcholine receptors (nAChRs) 
located on dopaminergic, glutamatergic and GABAergic neurons in the mesolimbic dopamine (DA) system, which causes 
an increase in extracellular DA in the nucleus accumbens (NAc).  That increase in DA reinforces tobacco use, particularly 
during the acquisition phase.  Enhanced glutamate transmission to DA neurons in the ventral tegmental area appears to 
play an important role in this process.  In addition, chronic nicotine treatment increases endocannabinoid levels in the 
mesolimbic DA system, which indirectly modulates NAc DA release and nicotine reward.  Accordingly, pharmacological 
agents that target brain acetylcholine, DA, glutamate, GABA, or endocannabonoid signaling systems have been proposed to 
interrupt nicotine action.  Furthermore, pharmacokinetic strategies that alter plasma nicotine availability, metabolism and 
clearance also significantly alter nicotine’s action in the brain.  Progress using these pharmacodynamic and pharmacokinetic 
agents is reviewed.  For drugs in each category, we discuss the mechanistic rationale for their potential anti-nicotine effi-
cacy, major findings in preclinical and clinical studies, and future research directions.
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Review

Introduction 

Nicotine use and dependence is a world-wide health 
problem.  In the United States alone, approximately 45 mil-
lion people smoke cigarettes and the adverse health effects 
from cigarette smoking account for an estimated half million 
deaths each year[1].  Though many cigarette smokers report 
a desire to quit smoking, few are successful.  In fact, accord-
ing to the US Department of Health and Human Services, 
approximately 80% of smokers who attempt to quit relapse 
before achieving 6 months of abstinence.  Of the remainder, 
relapses may occur years after a smoker initially quits[2].  
Consequently, there is a great need for pharmacotherapies to 
aid smokers who wish to quit.

Although the mechanisms underlying tobacco addic-

tion are not completely understood, accumulating evidence 
indicates that nicotine is the major addictive component[3, 4].  
In preclinical experimental conditions, nicotine produces 
many hallmark behaviors observed with other addictive 
drugs.  Non-contingent administration of nicotine stimu-
lates locomotor activity[5, 6] and enhances electrical brain-
stimulation reward[7].  It can also reinforce intravenous self-
administration[3, 8], produce conditioned place preference[9], 
and serve as a discriminative stimulus in animals[10].  In 
addition, nicotine cessation produces withdrawal syndromes 
with both somatic and affective symptoms[4, 11], and those 
symptoms can be alleviated by nicotine replacement.  

Neural mechanisms underlying nicotine dependence

Nicotinic acetylcholine receptors (nAChRs)  Nicotine 
is an alkaloid that binds to central and peripheral nicotinic 
acetylcholine receptors (nAChRs).  Acetylcholine (ACh) is 
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an endogenous neurotransmitter that binds to and activates 
nAChRs.  Neuronal nAChRs are ligand-gated ion chan-
nels with high permeability to Ca++, and are formed from 
combinations of five subunits[12, 13].  To date, twelve differ-
ent neuronal nAChR subunits have been cloned, including 
nine α-subunits (α2-α10) and three β-subunits (β2-β4).  
Non-neuronal subunits, α1, β1, γ, δ, and ε, form peripheral 
nicotinic receptors at the neuromuscular junction[14].  The 
neuronal subunits combine with a stoichiometry of two α- 
and three β-, or five α7-subunits to form nAChRs[15].  Both 
the α4β2 and α7 subtypes of nAChRs are the most abundant 
subtypes in the brain and are localized on presynaptic termi-
nals, axons, somatodendrites or on postsynaptic cells[16, 17].  
Overall, activation of presynaptic nAChRs by ACh or nico-
tine potentiates neurotransmitter release, while activation of 
postsynaptic nAChRs increases excitability of postsynaptic 
cells by increasing Ca++ influx via nAChR channels.  

ACh-glutamate-GABA-DA mechanisms underlying 
nicotine dependence  Although many areas of the brain 
are involved in reward, the mesocorticolimbic dopamine 
(DA) system serves a vital and fundamental role in mediat-
ing the rewarding and psychostimulant effects of addictive 
drugs, including nicotine[9, 18].  This system originates from 
DA neurons in the ventral tegmental area (VTA) in the 
midbrain and projects to the nucleus accumbens (NAc), the 
amygdala and the prefrontal cortex[18].  The activity of VTA 
DA neurons is regulated by excitatory glutamatergic inputs 
predominantly from the prefrontal cortex, cholinergic inputs 
from brainstem nuclei and inhibitory GABAergic inputs 
within the VTA or from the NAc (Figure 1).  This DA model 
is supported by a number of findings[9, 19].  For example, nico-
tine self-administration elevates NAc DA, and that elevation 
reinforces nicotine self-administration, particularly during 
the acquisition phase[20].  In contrast, chemical lesion of DA 
terminals or pharmacological blockade of DA receptors in 
the NAc attenuates the rewarding effects of nicotine, as indi-
cated by reduced self-administration[8, 21].  

Several studies suggest that the α4β2 nAChR subtype 
plays a major role in nicotine reward.  First, pretreatment 
with the selective α4β2 receptor antagonist dihydro-β-
erythroidine (DHβE) or the partial agonist SSR591813 
significantly inhibits nicotine self-administration in rats[22, 23].  
Similarly, genetic deletion of β2 subunits abolishes nicotine 
self-administration[24].  Second, in vivo microdialysis stud-
ies indicate that the selective α4β2 receptor partial agonist 
SSR591813 or genetic deletion of α4 or β2 subunits prevents 
nicotine-induced increase in NAc DA[23–25].  Third, nicotine-
mediated currents from VTA neurons are inhibited by 
DHβE[24, 26–28] or dramatically decreased on midbrain neu-

rons in β2-null mice[24, 28].  Fourth, brain slices from α4- or 
β2-subunit knockout mice lack high-affinity nicotine bind-
ing, confirming that most (if not all) binding sites for nico-
tine in adult brains contain α4β2-containing rece ptors[24, 29].  
These data suggest that both α4 and β2 subunits in the VTA 
are crucial in mediating nicotine’s DA-releasing effects.  Thus, 
the effects of nicotine on DA function could be mediated by 
activation of α4β2 nAChRs located on DA neurons in the 
VTA and on DA terminals in the NAc[30].  

In addition, several studies suggest the involvement of 
other nAChR subunits, including α3, α6, α7, and β3, in the 
control of DA release induced by nicotine.  It was reported 
α7 nAChRs are also expressed on VTA DA neurons [31, 32], 
and nicotine still activates midbrain neurons in β2-subunit 
knockout mice by a α7-nAChR mediated mechanism[28], sug-
gesting the involvement of α7 nAChRs in nicotine’s action.  
Differential distribution of nAChR subtypes has been found 
on glutamatergic (α7) and GABAergic (α4β2) terminals in 
the VTA[27, 28, 33].  Different nAChR subtypes appear to show 
different levels of desensitization: the α4β2 subtype desensi-
tizes more rapidly than the α7 subtype[32].  Therefore, it has 
been proposed that nicotine first activates then desensitizes 
α4β2 nAChRs on VTA DA neurons, producing an initial fast 
increase in extracellular DA in the NAc[12, 24, 26].  At the same 
time, nicotine also excites α7 nAChRs located on presynaptic 
glutamatergic terminals and increases excitatory glutamater-
gic inputs to VTA DA neurons.  Since the α7 nAChRs have 
much lower affinity for nicotine than α4β2 nAChRs, and are 
therefore much less susceptible to desensitization by low 
concentrations of nicotine obtained from tobacco smoking, 
the enhanced glutamate release causes prolonged DA neu-
ron activation[34].  In addition, nicotine may also excite α4β2 
receptors located on VTA GABAergic neurons to increase 
GABA release[35].  Thus, the DA-releasing effects of nico-
tine may result from a modification of the balance between 
excitatory and inhibitory inputs to DA neurons[12, 26, 36].  
This hypothesis may in part explain the finding with in vivo 
microdialysis that a single injection of nicotine produces 
long-term (2 h) increases in extracellular NAc DA[9].  

It should be pointed out that not all evidence supports 
this hypothesis.  For example, conflicting findings were 
found in mutant mice lacking the α7 receptors or in rats 
injected with the relatively selective α7 nAChR antagonist 
methyllycaconitine[37, 38].  Although much attention has 
focused on the VTA-NAc pathway, many other brain sites 
that are not yet extensively studied are also likely to contrib-
ute to nicotine reward and addiction.  

Chronic nicotine-induced neuroadaptations  Most 
smokers report that the first cigarette of the day produces the 
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most powerful effects[39], suggesting that fast tolerance and 
desensitization develop after repeated exposure to nicotine.  
This could be related to findings that chronic exposure to nic-
otine results in fast desensitization of α4β2 nAChRs, leading 
to upregulation of α4β2 nAChRs on the cell surface[12, 28, 40–42].  
On the other hand, repeated administration of nicotine is 
also associated with sensitization, an effect that appears to be 
mediated (at least with respect to locomotor sensitization) 
by α4β2 subunits[23, 43].  Sensitization of the motivational 
effects of nicotine is also seen in the self-administration and 
conditioned place preference paradigms[44, 45].  These neuro-
adaptations may contribute to the development of nicotine 
addiction[36].  

Animal models of nicotine dependence

Animal models of addiction are, by definition, approxi-

mations of human drug abuse.  A major obstacle to the devel-
opment of medication for nicotine dependence is the lack of 
animal models with sufficient predictive clinical validity, and 
therefore, multiple animal models have to be used to emulate 
different aspects of nicotine dependence in humans.  Six 
behavioral animal models or measures have been widely used 
in research on nicotine dependence.

Self-Administration  Drug self-administration reliably 
models drug reinforcement[46].  In this model, laboratory ani-
mals are allowed to operantly self-administer addictive drugs, 
such as nicotine.  Two commonly used self-administration 
paradigms are fixed-ratio (FR) and progressive-ratio (PR) 
schedules of drug reinforcement.  In the FR paradigm, a drug 
infusion follows after a fixed number of responses by the 
animal, eg, after every one (FR1) or two (FR2) lever presses.  
In the PR reinforcement paradigm, a progressively increasing 
work-load (eg, lever pressing) is imposed upon the animal in 

Figure 1.  Schematic diagram of the mesolimbic dopamine (DA) projection pathway, illustrating the actions of nicotine on extracellular DA, gluta-
mate and GABA in the ventral tegmental area (VTA), and the sites of action of various mechanism-based pharmacological agents in medication de-
velopment for the treatment of tobacco dependence.  The mesolimbic DA system originates in the VTA and projects to the nucleus accumbens (NAc).  
In the VTA, DA neurons (purple) are under tonic excitatory glutamatergic afferent influence from the medial prefrontal cortex (orange), and tonic 
inhibitory GABAergic afferent influence from GABAergic interneurons (teal) and also from long-loop GABAergic projections from the NAc (not 
shown).  Nicotine activates mesolimbic DA neurons either via α4β2 nAChRs located on VTA DA and GABAergic neurons or via α7 nAChRs on DA 
neurons and glutamatergic terminals.  Chronic nicotine exposure may also increase endocannabinoid contents in the VTA and NAc, which may 
remove the tonic inhibitory GABAergic control on VTA DA neurons via CB1 receptors localized on VTA GABAergic neurons or their terminals.  
Based on this hypothesis, various pharmacological agents that target ACh, DA, glutamate, GABA, and endocannabinoid transmission have been 
proposed and studied for their potential use in the treatment of tobacco dependence.  More details for each class of pharmacological agents are dis-
cussed in the text of this review. 
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order to receive one drug administration.  Eventually, a point 
is reached at which the animal stops responding.  This is 
termed the PR “break-point” and is considered a measure of 
rewarding efficacy[47].  

Reinstatement of drug-seeking behavior  Nicotine 
dependence is characterized by high rates of relapse to 
tobacco use.  The reinstatement animal model is widely used 
to model relapse to tobacco use in humans[48].  In this model, 
rats are implanted with intravenous catheters and are allowed 
to self-administer nicotine until stable nicotine-taking is 
achieved.  Then, vehicle is substituted for nicotine.  Since the 
animals are no longer rewarded, they stop (“extinguish”) the 
nicotine-seeking behavior.  Next, the experimenter adminis-
ters a stimulus to “trigger” the animal to relapse — to go back 
to the drug-seeking behavior that previously resulted in intra-
venous infusions of nicotine.  Three triggers cause relapse 
in this model: 1) re-exposure to nicotine, 2) re-exposure 
to environmental cues that were previously associated with 
nicotine self-administration, or 3) exposure to mild stress.  
The face validity of the reinstatement models rest upon the 
fact that these are the triggers that provoke relapse to tobacco 
use in humans[46].

Conditioned Place Preference (CPP)  The CPP model 
is an experimental procedure to study the rewarding effects 
of nicotine and/or reward-related learning and memory.  
In this model, a distinctive environment (in wall color, 
light, floor texture) in one compartment of a two- or three-
compartment apparatus is paired repeatedly with nicotine 
or vehicle injections.  CPP occurs when repeated nicotine 
administration in one particular environment results in the 
ability of previously neutral environmental stimuli to elicit 
approach behavior and increased time spent in that environ-
ment even in the absence of nicotine administration.  It has 
been argued that CPP, like self-administration and several 
other behavioral measures, is an example of DA-mediated 
incentive learning and memory, and that the approach 
behavior and increased time spent by animals in nicotine-
paired environment can be considered a measure of nicotine-
seeking behavior[49].

Drug discrimination  Drug discrimination procedures 
are often used as animal models for the subjective effects 
of an addictive drug[46].  The animal is trained to make one 
response when nicotine is given and a different response 
when vehicle is given.  Well-trained animals typically make 
close to 100% appropriate responses to discriminate nicotine 
from vehicle.  The degree to which a novel drug is perceived 
by the animal as “nicotine-like” versus “not-nicotine-like” is 
reflected in the percentage of nicotine-associated responses 
versus vehicle-associated responses.  By combining a novel 

drug (eg, a putative anti-nicotine therapeutic agent) with 
nicotine in this paradigm, one can determine the degree to 
which the novel drug increases or decreases the subjective 
“nicotine-like” feeling experienced by the animal.  

Brain stimulation reward  Virtually all addictive drugs 
not only have rewarding actions of their own, but also poten-
tiate the rewarding actions of other substances or events[50].  
The brain stimulation reward (BSR) paradigm models this 
property of addictive drugs by directly assessing the degree 
of drug-induced enhancement of BSR in animals trained to 
respond for electrical stimulation of specific brain-reward 
loci such as the VTA, medial forebrain bundle, or NAc.  To 
assess drug-induced enhancement of BSR, the “rate-fre-
quency curve-shift” paradigm is commonly used to measure 
changes in BSR thresholds after drug administration.  Addic-
tive drugs (such as nicotine) produce highly characteristic 
leftward shifts (eg, decreased BSR threshold) in these func-
tions, indicating summation between the reward provided 
by the electrical stimulation and the drug-induced reward.  
This paradigm is therefore useful in the search for com-
pounds with potential anti-addictive therapeutic properties 
and, conversely, to screen compounds for reward-enhancing 
properties, which might be predictive of intrinsic addictive 
potential[46].  

Withdrawal  Many tobacco smokers report that they 
experience unpleasant withdrawal symptoms when they 
quickly quit smoking.  In experimental animals, abrupt cessa-
tion of chronic nicotine or administration of nAChR antago-
nists causes somatic withdrawal symptoms, such as shakes/
tremors, gasps/writhes, teeth chattering and ptosis[51, 52], 
which may in part mimic withdrawal symptoms experienced 
by abstinent smokers[53].  In addition, nicotine withdrawal 
also results in reduced DA overflow in the NAc[54] and elicits 
changes in behavior that are characteristic of anhedonia[11].  
BSR, described above, can also be used to measure nicotine 
withdrawal-induced anhedonia[36, 46].  These changes are 
thought to model the dysphoria experienced by many smok-
ers when they first quit[55].  Strikingly, all these symptoms 
can be reversed by nicotine replacement therapy[11].  Thus, 
relieving nicotine withdrawal symptoms, thought to be an 
important reason for relapse to tobacco use, may be another 
strategy to aid cessation of tobacco smoking.  

Mechanism-based medication discovery

Although several types of pharmacological therapies 
have been approved for smoking cessation in both North 
America and Europe, long-term abstinence rates are less 
optimal.  These approved pharmacological therapies include 
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nicotine replacement, the antidepressant bupropion and the 
α4β2 receptor partial agonist varenicline.  The efficacy of 
bupropion and varenicline for smoking cessation has raised 
questions about how a non-nicotine drug can aid in smoking 
cessation.  Here we review recent progress on “mechanism”-
based medication strategies for the treatment of nicotine 
dependence at both preclinical and clinical levels.  These 
strategies include various pharmacological agents that target 
brain ACh, DA, glutamate, GABA and endocannabinoid 
transmission, and pharmacokinetic approaches that alter 
blood nicotine concentrations, metabolism and clearance.  

ACh-based medication development  
Nicotine replacement  Nicotine replacement therapy 

(NRT) is an early pharmacotherapy approved in the early 
1980s for smoking cessation[56].  The rationale for NRT is 
similar to that for methadone or buprenorphine for the treat-
ment of opiate dependence.  That is, NRT uses safe delivery 
forms of nicotine to replace the nicotine obtained from ciga-
rettes, thereby eliminating tobacco smoking and tobacco-
related illnesses.  Various NRTs are currently available and 
include gums, transdermal patches, lozenges, tablets, and 
inhalers.  NRTs have been shown to be effective in aiding 
abstinence from cigarette smoking behavior, reducing the 
rewarding effects produced by nicotine from cigarettes, atten-
uating affective and somatic withdrawal symptoms, relieving 
craving and reducing relapse risk.  However, efficacy is low 
and only lasts for a short period of time.  At best only about 
20% of smokers are able to maintain long-term abstinence 
with any of these approaches, and first year relapse rates are 
as high as 80%.  The reasons underlying such low efficacy of 
NRTs are unclear, but likely to be related to their relatively 
poor pharmacokinetic properties compared to nicotine deliv-
ered via smoking.  Thus, much research has been directed to 
develop other non-nicotine strategies for the facilitation of 
smoking cessation.  

Nonselective nAChR antagonists  In theory, a nonselec-
tive nAChR antagonist would block the physiological and 
reinforcing effects of cigarette smoking, and thereby lead to 
extinction of cigarette smoking behavior.  A possible side-
effect is that an antagonist may precipitate withdrawal symp-
toms, and thus increase the risk of relapse to cigarette smok-
ing.  

Mecamylamine  Mecamylamine is a non-competitive 
nicotinic antagonist, originally used as an antihyper tensive 
agent[57].  Widely used in the 1950s, this orally effective 
antihypertensive agent is now rarely used because of its 
widespread ganglionic side-effects at antihypertensive doses.  
However, recent studies suggest that mecamylamine, at rela-
tively low doses, significantly attenuates the physiological and 

rewarding effects of nicotine, and improves abstinence rates 
in smoking cessation studies, particularly for women[58].  In 
particular, mecamylamine, when combined with NRT, signif-
icantly reduces craving for cigarettes and produces prolonged 
abstinence rates (37.5% versus 4.2% for 12 months) when 
compared with NRT alone[59].  Preclinical studies demon-
strate that mecamylamine attenuates intravenous self-admin-
istration of nicotine[3, 60, 61], reduces nicotine-enhanced brain-
stimulation reward[62], blocks nicotine-conditioned place 
preference[63], and inhibits the stimulant effect of nicotine on 
locomotor activity[64].  In contrast, it has also been reported 
that mecamylamine causes an increase rather than a decrease 
in smoking behavior, likely a compensatory response to par-
tially reduced nicotine reward[65].  Further, a recent study did 
not find an added benefit of combining mecamylamine with 
use of a transdermal nicotine patch[66].  Thus, further studies 
are required to confirm mecamylamine’s efficacy for smoking 
cessation.  Mecamylamine is currently in Phase III clinical 
trials in the United States, and is not yet approved by the US 
Food and Drug Administration (FDA) for smoking cessa-
tion.

nAChR partial agonists  Given the central role of α4β2 
nAChRs in nicotine reward as noted above, modulating the 
activity of these receptors is expected to have therapeutic 
benefits.  Partial agonists, by definition, have lower intrinsic 
functional activity, and therefore, produce a smaller maximal 
effect at full receptor occupancy than do full agonists.  By 
mimicking some of the agonist rewarding effects of nicotine, 
partial α4β2 nAChR agonists should, theoretically, relieve 
craving and withdrawal symptoms during abstinence.  In 
addition, high affinity α4β2 nAChR partial agonists may 
also prevent nicotine binding to α4β2 nAChRs, therefore 
producing an “antagonistic” anti-nicotine effect.  These con-
siderations prompted the search for ligands that act as partial 
agonists at the α4β2 nAChR subtype of as novel treatments 
for smoking cessation.

Varenicline Varenicline is a partial agonist at α4β2 and a 
full agonist at α7 nicotinic receptors[67, 68].  Both chemically 
and pharmacologically, varenicline is similar to cytisine, 
a plant alkaloid with high affinity for several subtypes of 
nAChRs[69].  Cytisine has been used in Eastern Europe for 
over 40 years as a treatment for tobacco dependence in 
the form of an extract from the herb Cytisus Laborinum 
L (Golden Rain acacia)[70].  In 1994, it was reported that 
cytisine is a weak partial agonist at nAChRs with limited 
absorption into the brain[71], providing an additional ratio-
nale for the use of partial agonists for smoking cessation.  
Direct chemical modifications of cytisine have lead to two 
novel highly potent and selective α4β2 nAChR partial ago-
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nists-varenicline and dianicline.  Varenicline, developed by 
Pfizer Inc, has been approved by the US FDA as a therapeutic 
aid to quit smoking, while dianicline, developed by Sanofi-
Aventis, is currently under Phase III clinical trials[69, 72, 73].  

Preclinical studies demonstrate that varenicline elevates 
extracellular DA in the shell of the NAc, an effect that is 
weaker than that evoked by nicotine.  Pretreatment with 
varenicline significantly inhibits nicotine-enhanced NAc DA 
and nicotine self-administration[69, 72, 73].  Varenicline itself 
partially substitutes for nicotine in animal self-administration 
paradigms and partially generalizes to nicotine as a discrimi-
native stimulus[69, 74].  Consistent with these findings, we have 
recently reported that varenicline also significantly inhibits 
nicotine-enhanced electrical brain-stimulation reward, an 
effect that is mediated by activation of α4β2, but not α7, 
nAChRs[75].  It has also been reported that varenicline signifi-
cantly reduces ethanol, but not sucrose, self-administration, 
and decreases voluntary ethanol, but not water, consumption 
in rats[76].  Clinical trials indicate superior efficacy of vareni-
cline over placebo and bupropion for achieving abstinence 
from smoking, and varenicline has also been shown to sig-
nificantly delay smoking relapse[73, 77, 78].  The safety profile 
of varenicline is generally good, with the most commonly 
occurring adverse event being nausea[79].  However, new 
safety warnings were added to the varenicline label in early 
2008 because of post-marketing reports of neuropsychiatric 
symptoms including agitation, depression and suicidality[79].  
A causal relationship between varenicline use and these 
symptoms has not been established.  

Nicotine metabolism inhibitors  In addition to targeting 
nAChRs, another approach is to elevate blood nicotine 
concentrations by reducing nicotine metabolism, thereby 
decreasing the number of cigarettes smoked[80].  In humans, 
approximately 80% of absorbed nicotine is metabolized to 
cotinine by the hepatic enzyme CYP2A6[81].  Nicotine is also 
excreted unchanged and metabolized to other minor metab-
olites, but these pathways account for only a small portion of 
nicotine.  Based on this, it has been proposed that CYP2A6 
inhibitors may have therapeutic potential for the treatment of 
tobacco dependence[82].  In support of this hypothesis, it was 
reported that the strong CYP2A6 inhibitors methoxsalen 
and tranylcypromine significantly elevate plasma nicotine 
levels during smoking or NRT treatment[83, 84] and signifi-
cantly decrease the desire to smoke[85].  Similarly, human sub-
jects with genetically low CYP2A6 activity have an increased 
likelihood (1.75 fold) of quitting smoking[86], suggesting that 
CYP2A6 inhibitors may hold some promise for smoking ces-
sation.  

Selegiline  Compared to other CYP2A6 inhibitors, sele-

giline is not only a competitive CYP2A6 inhibitor, but also 
a selective and irreversible monoamine oxidase B (MAO-B) 
inhibitor.  In the brain, MAO-B is the major enzyme that, 
together with MAO-A, metabolizes brain DA[87].  Since 
MAO-B activity is 40% lower in the brain of smokers com-
pared to nonsmokers[88], and this decrease in MAO-B is 
reversed during long-term smoking abstinence[89], it has been 
suggested that a tobacco smoke component with MAO-B 
inhibition activity may contribute to the rewarding effects 
of cigarette smoking[90, 91].  Based on this, selegiline has been 
investigated as a potential therapy for smoking cessation.  
Several clinical studies suggest that selegiline is effective in 
reducing withdrawal symptoms and increasing abstinence 
compared with placebo.  For instance, selegiline has been 
shown to significantly reduce smoking satisfaction during 
smoking and decrease craving during abstinence[92].  In addi-
tion, it has also been reported that oral selegiline increases 
smoking cessation trial endpoint (8-week) abstinence 
compared with placebo by 3-fold[93].  When combined with 
nicotine patch, selegiline doubled the 52-week continuous 
abstinence rate compared with nicotine patch alone[94].  In 
addition, there is no evidence indicating that selegiline is 
addictive[95].  Taken together, selegiline may have therapeutic 
potential for smoking cessation by inhibiting both nicotine 
and DA metabolism.  

Nicotine vaccines  The nicotine vaccine is a newer strategy 
being investigated for smoking cessation.  The principle of 
this strategy is to prevent nicotine from entering the brain.  
In immunized individuals, nicotine obtained from smoking 
is bound by nicotine-specific antibodies and cannot cross 
the blood-brain barrier, thus preventing its central effects.  
Since nicotine itself is not immunogenic, it must be conju-
gated to larger carrier proteins that can act as immunogenic 
molecules.  Currently, there are at least five companies devel-
oping nicotine vaccines using different antigenic molecular 
approaches.  An advantage of nicotine vaccines is that daily 
administration of the drug is not required, and only occa-
sional booster shots are needed to maintain an adequate anti-
body titer.  A major concern with nicotine vaccines is that the 
titer of antibodies after immunization may not be sufficient 
to sequester all of the nicotine in blood, limiting vaccine util-
ity for preventing nicotine entry into the brain during smok-
ing [80].  

Preclinical studies indicate that passive immunization in 
rats with nicotine antibodies prevents nicotine-conditioned 
place preference and attenuates withdrawal symptoms[96].  
Active immunization with nicotine vaccines significantly 
reduces (~65%) nicotine distribution into the brain[97], and 
inhibits nicotine self-administration, although it failed to 
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prevent the acquisition of nicotine self-administration[98].  
In addition, active immunization also significantly pre-
vents nicotine-triggered reinstatement of nicotine-seeking 
behavior[99].  Small-size clinical trials indicate that high 
doses of nicotine vaccine significantly increase continuous 
abstinence rates compared with placebo (38% vs 10% for 30 
days), and do not cause compensatory smoking behaviors or 
precipitate withdrawal[100].  There are two nicotine vaccines, 
developed by Cytos Biotechnology (http://www.cytos.com) 
and Nabi Biopharmaceuticals (NicVAXTM) (http://www.
nabi.com), which are currently under Phase II clinical trials 
for smoking cessation.  High abstinence rates were achieved 
with nicotine vaccines compared with the placebo (57% 
versus 31% at 6 months; 42% versus 21% at 12 months).  So 
far, there have been no serious adverse events associated with 
such vaccines[80, 100].  These data suggest that nicotine vac-
cines may be useful for smoking cessation treatment.  

DA-based medication development  As noted above, 
the mesolimbic DA system is critically involved in drug 
reward and addiction, including addiction to nicotine[101, 102].  
Based on this, much work on the development of new medi-
cations for treatment of tobacco addiction has focused on 
manipulation of DA transmission in the reward circuitry of 
the brain.  Two major pharmacological strategies of manipu-
lating brain DA transmission have emerged as the basis for 
anti-nicotine medication development: one being to target 
brain DA receptors with either partial agonists or antagonists, 
and another being to target brain DA transporters.  Although 
both DA D1 and D2 receptors have been shown to be criti-
cally involved in drug reward and addiction[103, 104], clinical 
trials with D1- or D2-like receptor antagonists have failed, due 
to lack of therapeutic effect with D1-like antagonists or severe 
side-effects with D2-like antagonists – such as dysphoria, sup-
pression of natural reward or abnormal movements[105].  In 
marked contrast to DA D1 and D2 receptors, the D3 receptor 
subtype has a restricted distribution in the brain; that is, D3 
receptors are selectively expressed in the mesolimbic DA sys-
tem with the highest receptor densities in the NAc, islands of 
Calleja and olfactory tubercle[106, 107].  This restricted neuro-
anatomic localization suggests that D3 receptors may play an 
important role in drug reward and addiction[108].  In addition, 
D3 receptors have the highest affinity for endogenous DA of 
all known receptors[109, 110], suggesting a crucial role for D3 
receptors in the normal functioning of the mesolimbic DA 
system.  Moreover, chronic exposure to nicotine significantly 
increases the expression of D3 receptor binding and mRNA 
levels in the mesolimbic DA system[111].  Based on this, it has 
been hypothesized that selective D3 receptor partial agonists 
or antagonists would be effective in the treatment of nicotine 

dependence[108, 109, 112].  
DA D3 receptor partial agonists or antagonists  The rationale 

for D3 partial agonists as novel treatments for tobacco depen-
dence is that: 1) D3 partial agonists are expected to modestly 
activate D3 receptors, and therefore blunt cigarette craving 
and withdrawal during abstinence; and 2) D3 partial agonists 
would have additional therapeutic anti-nicotine benefit by 
blocking nicotine-enhanced DA binding to D3 receptors.  In 
other words, such a compound can act either as an agonist or 
antagonist depending on the prevailing DA tone.  

BP-897  BP-897 is the first developed D3-selective par-
tial agonist[113].  It has modest (60–70 fold) selectivity for 
human D3 versus D2 receptors, and similar (60–70 fold) 
selectivity over other receptors including α1-, α2-adrenergic, 
and 5-HT1A receptors[113].  In experimental animals, BP-897 
produces a significant dose-dependent reduction in the 
expression of nicotine-induced CPP[111], nicotine-enhanced 
brain stimulation reward (Xi and Gardner, unpublished 
data), nicotine-conditioned locomotor responses, and 
nicotine-induced increases in D3 receptor expression in the 
NAc[111, 114].  In contrast, BP-897 failed to alter the dose–
response curve for nicotine drug discrimination.  When 
substituted for the training dose of nicotine, BP-897 did not 
produce nicotine-like discriminative-stimulus effects[111].  In 
addition, BP-897 fails to alter locomotor activity and food-
maintained behavior[115].  These findings suggest that BP-897 
may selectively reduce the motivational effects of nicotine 
without significant unwanted side-effects by itself.  However, 
enthusiasm for BP-897 has waned due to recent findings that 
BP-897 also displays full antagonist properties at both DA 
D2 and D3 receptors[116–118], suggesting that its therapeutic 
anti-nicotine effects could be mediated by blockade of D2 
and/or D3 receptors.  Since D2 receptor antagonism usually 
produces severe unwanted side-effects, such as dysphoria, 
inhibition of natural reward, and abnormal extra-pyramidal 
movements[103–105], it is suggested that BP-897, at high doses, 
may also produce such side-effects at the human level.  
BP-897 has recently entered Phase II clinical studies, but 
detailed pharmacokinetic and toxicological data have not yet 
been reported.

SB-277011A  SB-277011A is the most well character-
ized full D3 receptor antagonist to date.  SB-277011A has 
high affinity for the human cloned DA D3 receptor, and the 
ratio of in vitro D3/D2 affinity of SB-277011A for human and 
rat is 120 and 80, respectively[119].  SB-277011A has a 100-
fold or better selectivity over 180 other receptors, enzymes 
and ion channels[119].  A series of studies has assessed 
the efficacy of SB-277011A in animal models of nicotine 
dependence[120, 121].  SB-277011A significantly inhibits 
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nicotine self-administration under progressive-ratio (PR), 
but not low FR reinforcement schedules[122, 123], nicotine-
induced CPP[7], nicotine-enhanced brain reward, and 
nicotine-paired environmental cue functions[7].  In addition, 
SB-277011A also inhibits nicotine-induced reinstatement of 
drug-seeking behaviors[122] and nicotine cue-induced condi-
tioned locomotor activity[7, 114].  However, further develop-
ment of SB-277011A has been halted by Glaxo-SmithKline 
Pharmaceuticals, due to unexpectedly poor bioavailability 
(~2%) and a very short half-life (<20 min) in primates[124].  
Therefore, development of other D3-selective antagonists 
with higher bioavailability and more promising pharmaco-
therapeutic profiles is required[125].  There are two novel DA 
D3 receptor-selective antagonists, GSK598809, and GSK-
618334, which are currently under clinical phase I for the 
treatment of drug addiction, including nicotine dependence 
(http://clinicaltrials.gov/ct2/results?term=GSK-618334).

DA transporter (DAT) inhibitors  Although there is no 
evidence that nicotine can act directly on the DAT protein, 
several studies suggest a potential relationship[126].  First, a 
single dose of nicotine enhances DA clearance in rat NAc, 
suggesting that nicotine regulates extracellular DA con-
centration via the DAT[127]; and second, nAChR activation 
by acute and chronic nicotine augments amphetamine-
induced reverse transport of DA by the DAT[128, 129].  This DA 
enhancement by nicotine was fully reversed by the nicotinic 
receptor antagonists DHβE and mecamylamine, suggesting 
that nAChRs modulate DAT function[128].  

Bupropion Bupropion is an efficacious antidepressant 
and smoking cessation agent which inhibits the DAT and the 
norepinephrine transporter in addition to acting as a nico-
tinic antagonist at α3β2 and α3β4 nAChRs in rat striatum 
and hippocampus[130].  Bupropion is endorsed by the US 
Clinical Practice Guideline as a first-line pharmacotherapy 
for treatment of tobacco abstinence[56].  Since tobacco smok-
ers undergoing cessation often experience symptoms of 
depression[130, 131], it is speculated that bupropion’s pharma-
cotherapeutic efficacy may be mediated by its antidepres-
sant effects combined with blockade of the DAT and some 
nAChRs.  In animal studies, acute administration of bupro-
pion attenuated both nicotine-enhanced brain-stimulation 
reward and the brain-stimulation inhibition associated with 
nicotine withdrawal[132].  Also, bupropion blocks the acquisi-
tion of nicotine-induced CPP and mecamylamine-precipi-
tated withdrawal[133].  In the self-administration paradigm, 
bupropion produces a biphasic effect: low dose bupropion 
increases, whereas high dose bupropion decreases, nicotine 
self-administration in rats[134].  The increase in nicotine 
self-administration could be a compensatory response to a 

reduction in nicotine reward after low doses of bupropion.  
In humans, the majority of studies have demonstrated that 
bupropion is more effective at improving smoking cessation 
than placebo[135, 136].  Bupropion has also been reported to 
reduce nicotine abstinence-associated depression, difficulty 
concentrating, and irritability, relative to placebo[137].  A 
recent meta-analysis of several trials shows that bupropion 
nearly doubles smoking cessation rates with a similar efficacy 
to NRT[138, 139].  

Glutamate-based medication development  Glutamate 
is the major excitatory neurotransmitter in the brain and 
plays a critical role in the acute and long-term effects of nico-
tine.  The actions of glutamate are mediated by both iono-
tropic (iGluR) and metabotropic (mGluR) glutamate recep-
tors.  The iGluRs include N-methyl-D-aspartate (NMDA), 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate 
(AMPA) and kainate receptors, which are located primar-
ily on postsynaptic cells and regulate cellular excitability by 
opening glutamate-gated ion channels.  The mGluRs are clas-
sified into three groups based on sequence homology, signal 
transduction pathways and pharmacological actions.  Group 
I (mGluR1 and mGluR5) receptors are predominately 
located postsynaptically where they couple to Gq-proteins to 
activate phospholipase C.  Group II (mGluR2 and mGluR3) 
and Group III (mGluR4, mGluR6, mGluR7 and mGluR8) 
receptors are primarily found presynaptically and on glial 
cells, and couple to Gi/o proteins to negatively regulate ade-
nylyl cyclase activity.  Activation of group II or III mGluRs 
negatively modulates glutamate release.  

Nicotine binds with high affinity to nAChRs located on 
presynaptic glutamatergic terminals in various brain sites, 
including the VTA, NAc, prefrontal cortex and hippocam-
pus, producing an increase in glutamate release[32, 140, 141].  In 
the VTA, the α7 nAChR subtype has been shown to be local-
ized on VTA DA neurons[31, 32] and presynaptic glutamater-
gic afferents[142].  Activation of the α7 receptors by nicotine 
increases glutamate release in the VTA and activates iGluRs 
located postsynaptically on VTA DA neurons (Figure 1), 
with the end result being an increase in the activity of the 
mesolimbic reward circuit[139, 141].  Behaviorally, repeated 
administration of nicotine causes a long-lasting motor sen-
sitization[143, 144] that has been suggested to play a role in 
nicotine’s addictive properties[145].  Glutamatergic and dop-
aminergic mechanisms within the VTA and NAc have been 
implicated in this nicotine sensitization[145].  Pharmacological 
studies on nicotine reinforcement, relapse, and withdrawal 
have provided important information regarding possible 
glutamate-based interventions for the treatment of nicotine 
addiction[141].  The effects of glutamate compounds on nico-
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tine dependence are likely to be mediated by attenuation of 
nicotine-stimulated glutamate transmission in the mesolim-
bic system via blockade of either presynaptic mGluR2/3 
receptors or postsynaptic mGluR5 or NMDA receptors.

mGluR2/3 receptor agonists  Considering that mGluR2/3  
are located presynaptically and negatively modulate glu-
tamate release, it has been proposed that activation of 
mGluR2/3 receptors by agonists would decrease presynaptic 
glutamate release, and therefore block the rewarding effects 
of nicotine and cigarette smoking.

LY379268  LY379268 is a potent, systemically active 
mGluR2/3 agonist.  Systemic or local administration of 
LY379268 into the posterior VTA or the NAc shell dose 
dependently inhibits nicotine self-administration at doses 
that have no effect on food-taking behavior.  LY379268 also 
reverses cue-induced reinstatement of both nicotine- and 
food-seeking behaviors[146].  In addition, LY379268 attenu-
ates reward deficits associated with spontaneous nicotine 
withdrawal in rats[147].  However, when LY379268 is given 
alone, it inhibits brain-stimulation reward in rats[148].  These 
data suggest that LY379268 or other mGluR2/3 agonists 
may have some utility for the treatment of nicotine with-
drawal and dependence.  However, LY379268, at doses that 
inhibited cue-induced reinstatement of nicotine seeking, also 
inhibited food seeking, suggesting that stimulatory actions at 
presynaptic inhibitory mGluR2/3 have general effects on the 
motivational impact of conditioned reinforcers.  In addition, 
rapid tolerance occurred to the LY379268-induced decreases 
in nicotine self-administration[146], which may also limit the 
potential use of this compound for the treatment of nicotine 
dependence.

mGluR5 receptor antagonists  The mGluR5 receptor has 
become an important target in medication discovery for 
treatment of addiction, largely because of its relatively selec-
tive regional distribution in the brain and predominantly 
postsynaptic location[149].  mGluR5 blockade has been pro-
posed to attenuate nicotine-enhanced glutamate transmis-
sion in the mesolimbic DA system, and therefore attenuating 
the rewarding effects of nicotine.  A large body of literature 
indicates that mGluR5s play an important role in behavioral 
responses to nicotine.

MPEP  2-methyl-6-(phenylethynyl)-pyridine (MPEP) 
is a selective mGluR5 antagonist.  It has been shown to 
decrease nicotine self-administration in mice and rats[150–152].  
MPEP also decreases progressive-ratio reinforcement break-
ing points for nicotine self-administration more than break 
points for food-taking behavior[153].  MPEP also reduces rein-
statement of nicotine-seeking behavior induced by a nicotine 
priming injection[152] or by re-exposure to environmental 

cues previously associated with nicotine self-administration, 
but not by cues associated with food-taking behavior[154].  
However, MPEP does not block the ability of nicotine to 
enhance brain-reward[140], nor does it block the development 
of nicotine-induced CPP[155].  Thus, although MPEP may 
be of some clinical benefit in reducing cigarette smoking or 
relapse during attempts to quit, it may not significantly atten-
uate the effects of nicotine on brain reward functions[141].  
In addition to MPEP, it was recently reported that MTEP 
(3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyri dine), a novel 
highly selective mGluR5 antagonist, also significantly inhib-
its nicotine seeking, but does not affect the reinforcement 
enhancing effects of nicotine[156].  

NMDA receptor antagonists  NMDA receptor blockade 
either globally via systemic administration of an NMDA 
receptor antagonist or locally via injections of an NMDA 
receptor antagonist directly into the VTA or the central 
nucleus of the amygdala-decreases intravenous nicotine self-
administration in rats[157].  The effects of NMDA receptor 
antagonists on intravenous nicotine self-administration occur 
at doses that do not effect responding for food reinforcement 
under similar schedules of reinforcement.  

Memantine Memantine is a non-competitive, selective 
NMDA receptor antagonist[158], and is clinically used for the 
treatment of dementia.  The efficacy of memantine for the 
treatment of nicotine addiction has been investigated as well.  
In a preclinical study, memantine was found to block the 
acquisition of nicotine self-administration[159].  However, in 
humans, memantine does not influence cigarette consump-
tion, craving, or estimation of nicotine’s hedonic effects 
under conditions of instructed smoking reduction, nor 
does it significantly disturb sensory components of learning 
mechanisms relevant for the acquisition and maintenance of 
nicotine dependence[160].

GABA-based medication development  GABA is the 
most important inhibitory neurotransmitter in the mam-
malian CNS and it has been shown to play an important role 
in mediating the reinforcing effects of nicotine.  GABAergic 
afferents to the VTA originate from the pedunculopon-
tine tegmental nucleus, ventral pallidum and NAc.  Also, 
GABAergic interneurons within the VTA exert inhibitory 
control over VTA DA neurons[161].  The central effects 
of GABA are mediated by both ionotropic GABAA and 
metabotropic GABAB receptors.  GABAA receptors are 
located predominantly on postsynaptic cells and function-
ally lower their excitability.  In contrast, GABAB receptors are 
predominantly located on presynaptic terminals, and inhibit 
presynaptic neurotransmitter release.  Consequently, any 
pharmacological strategy that increases GABAergic trans-



732

 www.nature.com/apsXi ZX et al

mission within brain reward circuits by either elevating extra-
cellular GABA levels or directly activating GABA receptors 
would inhibit nicotine-induced increases in NAc DA and 
subsequent nicotine reinforcement[132].

Gamma-vinyl GABA (GVG, vigabatrin)   GVG is an 
irreversible inhibitor of GABA transaminase, the primary 
enzyme involved in GABA metabolism[162].  GABA transami-
nase is essential for GABA’s metabolic breakdown, and 
therefore its inhibition elevates brain GABA levels.  GVG has 
been shown to dose-dependently attenuate nicotine-induced 
increases in extracellular DA in the NAc[163].  GVG also 
decreases nicotine self-administration[164] and abolishes both 
the acquisition and the expression of nicotine-conditioned 
place preference[165].  In addition, GVG dose-dependently 
lowers nicotine-induced increases in NAc DA in both naive 
and chronically nicotine-treated rats, and blocks nicotine-
induced increases in striatal DA in non-human primates 
as measured by positron emission tomography[166].  These 
results suggest that GVG may have potential utility as an anti-
nicotine therapeutic medication.  GVG is currently in Phase 
II clinical trials for cocaine dependence, but not for nicotine 
dependence.

Baclofen  Baclofen is a systemically active GABAB receptor 
agonist.  It has been reported that baclofen dose-dependently 
inhibits nicotine-induced increases in NAc DA release[167].  
Systemic injections or microinjections of baclofen into the 
VTA, NAc shell, or pedunculopontine tegmental nucleus 
(that sends cholinergic, GABAergic and glutamatergic pro-
jections to the VTA) inhibits nicotine self-administration 
in rats and mice[35, 168–171].  In addition, baclofen, at high 
doses, completely inhibits nicotine-induced CPP and food-
reinforced responding, but fails to reduce nicotine’s drug 
discriminative effects[49].  A small-scale clinical study (16 
patients) indicated that a single dose of baclofen (20 mg/
kg) significantly altered the sensory properties of smoked 
cigarettes (eg, increasing ratings of ‘harsh’ and decreasing 
ratings of ‘like cigarette’s effects), produced mild sedative-
like effects, but failed to reduce cigarette craving or the 
number of cigarettes smoked[172].  Large-scale clinical trials 
with multiple drug treatment regimens are required for fully 
evaluating baclofen’s efficacy in the treatment of nicotine 
dependence.  On a cautionary note, baclofen may have unde-
sired side-effects, as indicated by preclinical findings that 
high dose baclofen significantly inhibited locomotor activity 
and rotarod locomotor perfor mance[49, 173], and decreased 
responding for non-drug rewards, such as food and electrical 
brain stimulation reward[164, 171, 174].

GS39783 and BHF177  GS39783 and BHF177 are novel 
GABAB receptor-positive allosteric modulators[175, 176].  Since 

positive allosteric modulators bind to a site distinct from the 
agonist binding pocket, they do not alter or perturb receptor 
signaling on their own, but potentiate the effect of GABA 
when endogenous GABA is released.  Recent studies dem-
onstrate that such positive allosteric compounds significantly 
inhibits nicotine self-administration under both FR and PR 
reinforcement schedules and attenuates nicotine-induced 
CPP and nicotine-enhanced brain-stimulation reward[177,  178].  
Strikingly, these effects were seen at a range of doses that 
neither altered food-taking behavior nor impaired rotarod 
locomotor performance in rats[173, 178].  These findings suggest 
that GABAB receptor positive allosteric modulators may have 
similar pharmacotherapeutic effects for smoking cessation 
as the full GABAB receptor agonist baclofen, but with fewer 
side-effects.  

Endocannabinoid-based medication develop -
ment  Recent studies suggest that the endocannabinoid 
system also plays an important role in nicotine’s addictive 
pro perties[179, 180].  This is supported by evidence that: 1) co-
administration of sub-threshold doses of a cannabinoid ago-
nist and nicotine produces an enhanced rewarding effect[181]; 
2) chronic administration of nicotine in rats produces 
increases in endocannabinoid (anandamide) levels in the lim-
bic forebrain and in both anandamide and 2-arachidonoly-
glycerol in the brainstem, although CB1 receptor binding and 
CB1 mRNA levels were not affected[182]; 3) the rewarding 
effects of nicotine, assessed in the CPP paradigm, are absent 
in CB1 receptor knockout mice[183], though the absence of 
CB1 receptors does not modify the acquisition of nicotine 
self-administration[184]; and 4) endocannabinoid agonists 
have been shown to facilitate DA neuron activity in the VTA 
and increase DA release in the NAc[185], whereas cannabinoid 
CB1 receptor antagonists inhibit nicotine self-administration 
and nicotine-seeking behavior[181, 186].  It is generally believed 
that such cannabinoid effects are mediated by activation of 
CB1 receptors located on presynaptic GABAergic neurons 
in the VTA and/or the NAc, causing a decrease in GABA 
release and an increase in NAc DA release[181].  Based on this, 
CB1 receptor antagonists may have utility for smoking cessa-
tion.  

 SR141716A (Rimonabant)  SR141716A is the first devel-
oped CB1 receptor antagonist[187], and has become an impor-
tant tool for research on cannabinoid involvement in nico-
tine’s addictive properties.  In preclinical studies, rimonabant 
dose-dependently blocks the nicotine-induced elevations 
in NAc DA and attenuates nicotine self-administration[188].  
Rimonabant also attenuates the expression and development 
of nicotine-induced CPP[189, 190] and blocks environmental 
cue-induced reinstatement of nicotine-seeking[180, 181].  In 
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humans, one trial gave both rimonabant and a nicotine 
patch or rimonabant and a placebo patch to smokers who 
were motivated to quit.  The rimonabant and nicotine patch 
produced abstinence rates of 39% during weeks 6−9 of 
treatment, compared with 21.3% of patients treated with 
rimonabant and placebo[191].  However, it has been recently 
reported that rimonabant increases anxiety and depressive 
symptoms[192, 193].  Because of these potential adverse effects, 
the US  FDA has not currently approved its use in humans.

AM251 AM251 is a novel CB1 antagonist, structurally 
similar to rimonabant[194, 195].  AM251 reverses locomotor 
sensitization to a nicotine challenge and nicotine-induced 
elevations in extracellular serotonin in the rat hippocam-
pus[196].  AM251 also dose-dependently suppresses intrave-
nous nicotine self-administration in rats.  The self-adminis-
tration behavior was reinstated by suspending AM251 treat-
ment.  Also, pretreatment with AM251 dose-dependently 
attenuates nicotine-induced and nicotine-associated cue-
induced relapse to nicotine-seeking behavior[197].  AM251 
has not yet been evaluated clinically.

Conclusion

Given the prevalence and serious consequences of smok-
ing and nicotine dependence, the development of effective 
therapies to aid smoking cessation is imperative.  In this 
article, we have reviewed the neurochemical bases underly-
ing the pharmacological actions of nicotine and nicotine 
reinforcement, and evaluated the pharmacological actions 
of a number of promising agents that target brain substrates 
on which nicotine acts in both preclinical and clinical mod-
els.  Though these compounds are different pharmacologi-
cally and mechanistically, they all work by interfering with 
nicotine’s actions in the mesolimbic DA reward and relapse 
system.  Recent success with some of these compounds, such 
as varenicline and bupropion, highlights the importance of 
preclinical medication development with animal models of 
drug dependence.  These mechanism-based pharmacological 
strategies may lead to more novel compounds for evaluation 
in human trials for smoking cessation.  If any one demon-
strates significant anti-nicotine reward, anti-nicotine craving 
and anti-relapse efficacy in humans, the beneficial impact on 
addiction medicine will be considerable.   
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